Refine Your Search

Topic

Author

Search Results

Technical Paper

Influences of Compression Ratio and Methane Additive on Combustion Characteristics in a DME-HCCI Engine

2005-10-24
2005-01-3745
In this study, a spectroscopic method was used to measure the combustion characteristics of a test diesel engine when operated on dimethyl ether (DME) under a homogenous charge compression ignition (HCCI) combustion process. A numerical analysis was made of the elementary reactions using Chemkin 4.0 to perform the calculations. The results of the analysis showed that compression ratio changes and the methane additive influenced the autoignition timing in the DME-HCCI combustion process. In the experiments, reducing the compression ratio delayed the time of the peak cylinder pressure until after top dead center, thereby increasing the crankshaft output and thermal efficiency. The addition of methane enabled the DME-HCCI engine to provide crankshaft output equivalent to that seen for diesel engine operation at a low equivalence ratio. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

A Study on Ion Current and OH Radical Luminescence Behavior in a Two-Stroke Engine

2000-01-15
2000-01-1424
In this research, an investigation was made of ion current and OH radical luminescence behavior in the progression from normal combustion to knocking operation. One pair each of an ion probe and a quartz observation window was fitted in the center and on the end of the combustion chamber. The peak values of the ion voltage drop and the OH radical emission intensity both increased as the cylinder head temperature and the cylinder pressure rose. It is possible to understand combustion conditions by analyzing measured waveformes of the ion voltage drop and the OH radical emission intensity.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Study on Realization of Dual Combustion Cycle by Lean Mixture and Direct Fuel Injection

2018-10-30
2018-32-0011
The purpose of this study is to realize dual-combustion cycle for gasoline engines. For the purpose, lean combustion and direct fuel injection were applied to small diesel engine. The lean gasoline-air mixture was provided and was ignited by small amount of pilot diesel fuel injection (constant volume combustion). Then, diesel fuel was injected by main injection and was burned with the remained oxygen after the lean combustion (diffusion combustion). The equivalence ratio 0.3, 0.4 and 0.5 of mixture were used to avoid the spontaneous compression auto-ignition. The total equivalence ratio with supplied gasoline and diesel fuel was adjusted to 1.0. The base pilot injection timing was selected as the ignition of pre-mixture took place at T.D.C. and pilot injection timings were changed 2 degree before and behind of base timing. The main fuel injection timings were 50, 75 and 100% of the duration between pilot injection timing and T.D.C.
Technical Paper

A Study on Accomplishing Lean Combustion by Multistage Pulse Discharge Ignition Using an Optically Accessible Engine

2018-10-30
2018-32-0007
Lean burn technology has a problem of greater combustion fluctuation due to unstable initial flame formation and slow combustion. It is generally known that generating a flow field in the cylinder is effective for reducing combustion fluctuation and shortening the combustion period. In this study, we investigated the influence of the discharge condition and in-cylinder swirl flow on initial flame formation and ignition performance between conventional spark ignition (SI) and multistage pulse discharge (MSPD) ignition. Visualized photographs were obtained near the spark plug with a high-speed camera in an optically accessible engine. In-cylinder pressure analysis was also performed in order to explicate the combustion phenomena. The results revealed that ignition performance of both SI and MSPD was improved under a swirl flow condition in the cylinder and that combustion fluctuation was effectively reduced.
Technical Paper

Influence of Autoignition and Pressure Wave Behavior on Knock Intensity Based on Multipoint Pressure Measurement and In-Cylinder Visualization of the End Gas

2018-10-30
2018-32-0001
In this study, the effect of autoignition behavior in the unburned end-gas region on pressure wave formation and knock intensity was investigated. A single-cylinder gasoline engine capable of high-speed observation of the end gas was used in the experiments. Visualization in the combustion chamber and spectroscopic measurement of light absorption by the end gas were carried out to analyze autoignition behavior in the unburned end-gas portion and the reaction history before autoignition. The process of autoignition and pressure wave growth was investigated by analyzing multipoint pressure histories. As a result, it was found that knocking intensity increases through interaction between autoignition and pressure waves.
Technical Paper

Study on Knocking Characteristics for High-Efficiency Operation of a Super-Lean Spark Ignition Engine

2018-10-30
2018-32-0002
This study investigated the influence of EGR and spark advance on knocking under high compression ratio, ultra-lean mixture and supercharged condition using premium gasoline as a test fuel. A high-compression ratio, supercharged single cylinder engine was used in this experiment. As a result, the period from ignition to autoignition was prolonged. In addition, knock intensity was drastically reduced. In other words, it is inferred that by combining an appropriate amount of EGR and spark advance, high efficiency operation avoiding knocking can be realized.
Technical Paper

A Study of the Factors Determining Knocking Intensity Based on High-Speed Observation of End-Gas Autoignition Using an Optically Accessible Engine

2018-10-30
2018-32-0003
The purpose of this study was to investigate how autoignition leads to the occurrence of pressure oscillations. That was done on the basis of in-cylinder visualization and analysis of flame images captured with a high-speed camera using an optically accessible engine, in-cylinder pressure measurement and measurement of light emission from formaldehyde (HCHO). The results revealed that knocking intensity tended to be stronger with a faster localized growth speed of autoignition. An investigation was also made of the effect of exhaust gas recirculation (EGR) as a means of reducing knocking intensity. The results showed that the application of EGR advanced the ignition timing, thereby reducing knocking intensity under the conditions where knocking occurred.
Technical Paper

Laser Breakdown-Assisted Long-Distance Discharge Ignition

2015-09-01
2015-01-1897
We developed a novel ignition method called laser breakdown-assisted long-distance discharge ignition (LBALDI) that combines laser breakdown with a discharge to realize lean combustion. The creation of laser breakdown plasma between electrodes for discharge enables discharges over longer distances than those of conventional sparkplug as inferred from laser-triggered lightning or laser-triggered gas switches. This method should help realize volumetric ignition through the creation of a long-distance discharge. Experiments on the fundamental discharge and ignition of methane/air mixtures were conducted. The optimum incident time of the laser prior to the application of a high voltage was found to reduce the sparkover voltage and markedly reduce the voltage required by LBALDI under pressurized air conditions. In the ignition experiment, LBALDI showed the fastest heat release rate at the lean flammable limit.
Technical Paper

Improvement of HC-SCR Performance by Fuel Reforming Using a Low Temperature Oxidation

2021-04-06
2021-01-0591
A fuel reforming technology using a low temperature oxidation was developed to improve a NOx reduction performance of HC-SCR (Hydrocarbons Selective Catalytic Reduction) system, which does not require urea. The low-temperature oxidization of a diesel fuel in gas phase produces NOx reduction agents with high NOx reduction ability such as aldehydes and ketones. A pre-evaporation-premixing-type reformer was adopted in order to generate a uniform temperature field and a uniform fuel/air premixed gas, and to promote the low temperature oxidation efficiently. As a fundamental study, elementary reaction analysis for n-hexadecane/air premixtures was carried out to investigate the suitable reformer temperature and fuel/air equivalence ratio for generation of oxygenated hydrocarbons. It was found that the reforming efficiency was highest at the reforming temperature around 623 to 673K, and aldehydes and ketones were produced.
Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Technical Paper

Influence of Initial Turbulence in RCM on Spontaneous Ignition of End Gas under SI Combustion

2015-09-01
2015-01-1876
The influence of the eddy scale of initial turbulence in RCM on the pressure rise rate after spontaneous ignition of end gas was investigated. The combustion time of the end gas after spontaneous ignition was observed by using high-speed direct photography. As a result, the large scale eddy reduced the pressure rise rate after spontaneous ignition. The temperature inhomogeneity of end gas was higher with the large scale eddy. The combustion time of end gas after spontaneous ignition was prolonged by variation in local ignition delay due to inhomogeneity. The large scale eddy may prevented the knocking occurrence.
Technical Paper

Effects of Hydrocarbon with Different Ignition Properties and Hydrogen Blended Fuels on Autoignition and Combustion in an IC Engine

2023-10-24
2023-01-1802
Hydrogen has attracted attention as one of the key fuels for making internal combustion engines carbon neutral. However, the combustion characteristics of hydrogen differ greatly from those of conventionally used hydrocarbons. Therefore, in order to develop next-generation internal combustion engines that operate on hydrogen, it is first necessary to have a thorough understanding of the combustion characteristics of hydrogen. Engines that can take maximum advantage of those characteristics should be developed on the basis of that knowledge. Toward that end, the purpose of this study was to investigate the fundamental combustion characteristics of hydrogen in a test engine. This paper presents the results of an investigation of the effects on low-temperature oxidation reactions and autoignition when hydrogen was blended into dimethyl ether (DME) [1, 2], a gaseous hydrocarbon fuel.
Technical Paper

8 A Study of the Influence of Fuel Temperature on Emission Characteristics and Engine Performance of Compression Ignition Engine

2002-10-29
2002-32-1777
In this study, the heated fuels were provided to the diesel engine in order to activate the fuel before the injection. Two test fuels: the normal diesel fuel and cetane, which have different boiling points were used. For both normal diesel fuel and cetane, crank angles at ignition and maximum pressure are delayed and the maximum combustion pressure is decreased as the fuel temperature rises. In cases of large and middle mass flow rate of fuel injection, the brake thermal efficiency and brake mean effective pressure are decreased when the fuel temperature is higher than 570 [K]. However, in the case of small mass flow rate of fuel injection, the brake thermal efficiency is almost independent of fuel temperature. HC and CO concentrations in the exhaust gas emission show constant values regardless of fuel temperature. However, NOx concentration is gradually decreased as the fuel temperature rises.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

A Study of IDI 2-Stroke Cycle Compression Ignition Engine with DME

2009-11-03
2009-32-0063
DME is alternate fuel for diesel engines, however DME has defects such as small lower calorific value, inferior lubricity and weak fuel penetration. To compensate disadvantages, In-direct injection 2-stroke diesel engine with low pressure fuel injection system was proposed. The fuel injection timing near TDC gave good performance because the heat loss of low temperature oxidation reaction reduced. The brake torque and brake thermal efficiency of 2-stroke IDI diesel engine were lower than those of 4-stroke engine. However, the exhaust gas emissions were very low level because the intake air leaked through the exhaust port and the exhaust gas was diluted.
Technical Paper

Combustion Characteristic of Lean Mixture Ignited by Gas-Oil Injection in High Compression Engine

1997-10-27
978496
We have investigated combustion characteristics of lean gasoline-air pre-mixture ignited by gas-oil injection using a high compression D.I. diesel engine. Gasoline was supplied as an uniform lean mixture by using carburetors, and gas-oil was directly injected into the cylinder. Two different types of combustion chamber were attempted. It was confirmed that the lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An engine with the re-entrant type combustion chamber had an advantage for combustion and ignition. The brake mean effective pressure increased when relatively rich mixture was provided with a small amount of the gas-oil injection. As the gas-oil injection increased, HC concentration decreased, and NO and CO concentration increased. The exhaust gas emission of pollutants could be reduced when lean mixture was ignited by an optimum gas-oil injection.
Technical Paper

Analysis of Intermediate Combustion Products in Preflame Reactions in a Spark-Ignition Engine

1997-10-27
978516
The use of a higher compression ratio is desirable for improving the thermal efficiency and specific power of spark-ignition engines, but it gives rise to a problem of engine knock. In the present research, an investigation was made of the role of the preflame reaction region of a spark-ignition engine in the occurrence of autoignition. Emission spectroscopy was used to measure the behavior of formaldehyde (HCHO) in a cool flame. In addition, measure the behavior of the faint light attributed to the HCO radical in a blue flame with the concurrent measurement of the OH radical. The emission waveforms measurements obtained for HCHO when n-heptane (ORON) was used as the fuel, It is thought that these tendencies correspond to the passage and degeneracy of a cool flame. Further, the emission waveforms measured for the HCO radical when blended fuels (6ORON, 8ORON) were correspond to that of a blue flame.
X